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Role of the diffuse layer of the ionic charge on the impedance
spectroscopy of a cell of liquid
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{Departamentul de Fizica, Universitatea ‘Politehnica’ din Bucuresti, Splaiul Independentei 313, 77206 Bucharest,
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(Received 10 December 2004; accepted 8 March 2005 )

We investigate the role of the diffuse layer of the ionic cloud on impedance spectroscopy
measurements. The analysis is performed assuming that the ions have equal mobility, the
electrodes are perfectly blocking and adsorption phenomenon can be neglected. We find that
the dielectric permittivity, in the limit of high frequency v, tends to the dielectric permittivity
of the pure liquid as v23/2. The relationship between the detected equivalent permittivity and
conductivity of the cell with the real and imaginary part of the complex dielectric constant is
discussed. We show also that the presence of the ions is responsible for a distribution of
relaxation times. An application to nematic liquid crystals is presented.

1. Introduction

The impedance spectroscopy technique is used to

characterize liquids electrically [1]. In this technique a

condenser having the shape of a slab is filled with the

material to be investigated. The condenser is then

submitted to an a.c. voltage, and the impedance of the

sample is measured as a function of the frequency of the

applied voltage. The analysis is performed in the limit of

small amplitude of the applied voltage, in such a

manner that the response of the sample to the external

signal is linear. The meaning of small voltage is that the

applied voltage is small with respect to the thermal

voltage VT5kT/q, where kT is the thermal energy and q

the electric charge of the ion. In the limit of low

frequency of the signal, the ions present in the liquid

contribute to the electrical current, and so to the

detected impedance. Several models have been proposed

to take into account the effect of the ions on the electric

response of a liquid [2]. In this paper we present a simple

model to describe the influence of the ions on the

impedance spectra. We assume that the ions, mono-

valent of charge q, are dimensionless and dispersed in a

homogeneous medium of dielectric constant e and have

the same mobility, and that they are not adsorbed by

the electrodes. According to this last hypothesis, the f-

potential vanishes, and the analysis of the impedance

spectroscopy is greatly simplified [3, 4]. The electrodes

are supposed perfectly blocking, in such a manner that

there is no charge injection into the liquid. First we find

the distribution of ions, when the external voltage

depends sinusoidally on the time. The ionic contribu-

tion to the current in the external circuit is then

evaluated; finally, the equivalent impedance of the cell

is deduced. Our paper is organized as follows. The

physical system and basic hypotheses are presented in

§ 2; the fundamental equations of the problem are

discussed in § 3; the distribution of the ionic charge and

the potential across the sample are reported in § 4. The

impedance of the cell is evaluated in § 5, where we also

present the frequency dependence of the equivalent

resistance and equivalent admittance of the sample. In

this section are also presented the frequency dependence

of the equivalent electrical conductivity and of the

equivalent dielectric constant of the cell filled with the

liquid under investigation. The relationship between

the equivalent conductivity and of the equivalent

dielectric permittivity with the imaginary and real parts

of the complex dielectric constant is discussed in § 6; § 7

is devoted to the conclusion.

2. The physical system and basic hypotheses

Let us consider a slab of thickness d filled with an

isotropic liquid. The z-axis of the cartesian reference

frame used in the description is normal to the bounding

surfaces at z5¡d/2. We assume that in thermodyna-

mical equilibrium the liquid contains a density N of ions

of positive and negative sign, uniformly distributed. The

ions are assumed to be identical in all respects, except*Corresponding author. Email: giovanni.barbero@polito.it
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for the sign of the electrical charge. In particular they

have the same mobility m+5m25m. In this situation, in

the absence of selective adsorption, the liquid is globally

and locally neutral. The presence of an external electric

voltage produces a perturbation of the distribution of

the ions in the liquid, in the sense that it remains

globally neutral, but it is now locally charged. In the

following we suppose the sample to be submitted to an

external sinusoidal voltage of amplitude V0 and

frequency f5v/(2p). By indicating with n+ and n2 the

density of the two kinds of ions we have n+(z, t)5n2(z,

t)5N, for V050, and n+(z, t)?n2(z, t), for V0?0. The

conservation of the number of particles implies that

ðd=2

{d=2

nz z, tð Þdz~

ðd=2

{d=2

n{ z, tð Þdz~N d ð1Þ

under the assumption that there is no recombination

and the electrodes are perfectly blocking, as we suppose

in our analysis. We assume that the amplitude of the

external voltage V0 is such that the actual densities of

ions differ only slightly from N. By putting

n+~Nzdn+ z, tð Þ ð2Þ

the previous hypothesis implies that dn¡(z, t)%N. We

suppose furthermore that V(¡d/2, t)5¡(V0/2) exp (ivt).

In this case, since m+5m25m, we have n+(z, t)5n2(2z,

t). Equation (1), taking into account equation (2),

implies that

ðd=2

{d=2

dnz z, tð Þdz~

ðd=2

{d=2

dn{ z, tð Þdz~0 ð3Þ

thus stating the global neutrality.

3. Fundamental equations of the problem

The fundamental equations of the problem are [5] the

equation of continuity

qn+

qt
~{

qj+

qz
ð4Þ

and the Poisson equation

q2V

qz2
~{

q

e
nz{n{ð Þ ð5Þ

where q is the electrical charge of the ions, and j¡ the

density of currents of positive and negative ions given

by

j+~{D
qn+

qz
+

q

KT
n+

qV

qz

� �
: ð6Þ

In equation (6) the first term in the r.h.s. is the diffusion

current, while the second is the drift current. In

equation (6) we have used the Einstein–Smolukowsky

relation relating the mobility m to the diffusion

coefficient D, m/D5q/(kT) where k is the Boltzmann

constant and T the absolute temperature [6]. Since the
electrodes are supposed perfectly blocking we have the

following boundary conditions on j¡

j+ +d=2, tð Þ~0: ð7Þ

The others boundary conditions of the problem are

connected with the imposed difference of potential
V(¡d/2, t)5¡(V0/2) exp (ivt). To find the influence of

the diffuse layers of ions on the impedance spectroscopy

we have to evaluate first the total current in the external

circuit, taking into account the presence of the ions.

After that it is necessary to evaluate the electrical

impedance of the cell under investigation.

4. Solution of the problem

From Equation (6), by taking into account that dn¡(z,

t)%N, we get

j+~{D
q dn+ð Þ

qz
+

Nq

kT

qV

qz

� �
: ð8Þ

Substituting equation (8) into (4) we obtain

q dn+ð Þ
qt

~D
q2 dn+ð Þ

qz2
+

Nq

kT

q2V

qz2

( )
: ð9Þ

Furthermore, by substituting equation (2) in (5) we

have

q2V

qz2
~{

q

e
dnz{dn{ð Þ: ð10Þ

Equations (9) and (10) show that if V(¡d/2, t)5

¡(V0/2) exp (ivt), in the steady state dn¡(z, t)5g¡(z)
exp (ivt) and V(z, t)5w(z) exp (ivt), where, in particular

w +d=2ð Þ~+V0=2 ð11Þ

for the boundary conditions imposed on the applied

potential. It follows that in the steady state equation (10)
can be rewritten as

w00 zð Þ~{ q=eð Þ gz zð Þ{g{ zð Þ
� �

ð12Þ

where the prime means derivative with respect to the

z-coordinate.

The functions g¡(z) are solutions of the differential

equations

g00+ zð Þ{ 1

2l2
1z2i

v

D
l2

� �
g+ zð Þz 1

2l2
g+ zð Þ~0 ð13Þ

obtained by equation (9), where l~ ekT
	

2Nq2

 �� �1

2 is the

Debye length [7]. From the condition n+(z)5n2(2zt),
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related to the hypothesis that the positive and negative

ions have the same mobility, taking into account (2)

it follows that g+(z)5g2(2z). The solutions of

equation (13) satisfying this symmetry condition

are

g+ zð Þ~m0 cosh azð Þ+p0 sinh bzð Þ ð14Þ

where

a2~i
v

D
, and b2~

1

l2
1zi

v

D
l2

� �
: ð15Þ

From the definition of b2 it follows that for v%vr5

D/l2, its real part is large with respect to its imaginary

part. Vice versa for v&vr. It follows that for v,vr

we expect a change in the frequency behaviour of the

system.

The conservation of the number of particles is

contained in equation (3), which can be rewritten in

the form

ðd=2

{d=2

g+ zð Þdz~0: ð16Þ

Condition (16), taking into account (14) implies m050.

Hence g¡(z)5¡p0 sinh (bz), where p0 is an integration

constant to be determined by means of the boundary

conditions (7) and (11).

The profile of the electric potential is given by

equation (12), which in the case under consideration

reads

w00 zð Þ~{2 q=eð Þp0 sinh bzð Þ ð17Þ

from which, by taking into account that in our

framework w(z)52w(2z), we get

w zð Þ~{2 q
	

eb2

 �

p0 sinh bzð Þzcz: ð18Þ

The integration constant c is determined by the

boundary conditions (7) and (11).

The current densities are, according to equation (8),

given by

j+~{D g0++ qN=kTð Þw0 zð Þ
� �

exp ivtð Þ ð19Þ

which for the results reported above can be rewritten in

the form

j+~+D i v=Dbð Þp0 cosh bzð Þz Nq=kTð Þc½ �exp ivtð Þ: ð20Þ

By means of equations (18) and (20) the boundary

conditions of the problem become

{2 q
	

eb2

 �

p0 sinh bd=2ð Þzcd=2~V0=2

i v=Dbð Þp0 cosh bd=2ð Þz Nq=kTð Þc~0:
ð21Þ

By solving equation (21) with respect to p0 and c we get

p0~{
Nqb

2kT

1

1
	

l2b

 �

sinh bd=2ð Þzi vd=2Dð Þcosh bd=2ð Þ
V0

c~i
v

2D

cosh bd=2ð Þ
1
	

l2b

 �

sinh bd=2ð Þzi vd=2Dð Þcosh bd=2ð Þ
V0:

ð22Þ

The electrical problem is then solved.

5. Impedance of the cell

We can now evaluate the charge sent by the power

supply on the electrodes. Since V(z, t)5w(z) exp (ivt) the

electric field is

E z, tð Þ~{
qV

qz
~{w0 zð Þexp ivtð Þ ð23Þ

From the theorem of Coulomb E(d/2, t)52S(t)/e,

where S is the surface charge density on the electrode

at z5d/2. Consequently, S(t)5ew9(d/2) exp (ivt), and for

the discussion reported above,

S tð Þ~ 1

2
eb2 cosh bd=2ð Þ

1
	

l2b

 �

sinh bd=2ð Þzi vd=2Dð Þcosh bd=2ð Þ
V0 exp ivtð Þ: ð24Þ

The current I5SdS/dt, where S is the surface area of the

electrodes, is then

I~S
iv

2
eb2 cosh bd=2ð Þ

1
	

l2b

 �

sinh bd=2ð Þzi vd=2Dð Þcosh bd=2ð Þ
V : ð25Þ

The impedance of the cell defined by Z~V=I is found
to be

Z~{i
2

veb2S

1

l2b
tanh bd=2ð Þzi

vd

2D

� �
: ð26Þ

If a true dielectric is considered, N50, and hence lR‘.

In this case equation (26) gives

Z~
1

iveS=d
ð27Þ

as expected.
From equation (26) one can obtain R~<Z and

X~=Z, which are the quantities experimentally detect-

able. The phenomenological parameters characterizing

the physical properties of the cell are the equivalent

conductivity seq, and the equivalent dielectric constant

eeq, defined by

seq~
1

R
d

S
, and eeq~{

1

vX
d

S
: ð28Þ

Before entering into a detailed analysis of the

impedance of the cell given by equation (26) we

consider the special cases of vR0 and vR‘,

(24)

(25)
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limiting our investigations to the case in which

l%d{. In the first case, from (26) we obtain

Z v?0ð Þ~R v?0ð ÞziX v?0ð Þ, where

R v?0ð Þ~ l2d

DeS
1{

l4

D2
v2

 !

X v?0ð Þ~{2
l

veS
1z

l3d

2D2
v2

 !
:

ð29Þ

From equation (29), taking into account (28), we get for

seq(vR0) and eeq(vR0) the expressions

seq v?0ð Þ~ eD

l2
1z

l4

D2
v2

 !

eeq v?0ð Þ~ 1

2
e

d

l
1{

l3d

2D2
v2

 !
:

ð30Þ

In particular, in the d.c. limit, seq(0)5eD/l252Nqm, as

expected because we have two identical carriers of

charge [8]. Furthermore, eeq(0)5(1/2)e(d/l), since in this

limit the equivalent capacity of the cell is the one of two

equal condensers of thickness l in series. Note that

seq(0) is d-independent, whereas eeq(0) is proportional to

d [9].

In the limit of high frequency (vR‘) from equa-

tion (26) we obtain Z v??ð Þ~R v??ð ÞziX v??ð Þ,
where

R v??ð Þ~ Dd

v2l2eS
1{

1

d

2D

v

� �1
2

" #

X v??ð Þ~{
d

veS
1{

D

l2dv

2D

v

� �1
2

" #
:

ð31Þ

In this case seq(vR‘) and eeq(vR‘) are found to be

seq v??ð Þ~ el2

D
v2 1z

1

d

2D

v

� �1
2

" #

eeq v??ð Þ~e 1z
D

l2dv

2D

v

� �1
2

" #
:

ð32Þ

From equation (32) it follows that for vR‘, the

equivalent conductivity is seq5(el2/D)v25seq(0)(l2v/

D)2. The equivalent capacitance of the cell at high

frequency is Ceq5eeq(S/d), showing that limvR‘eeq5e,

as expected because in this limit the ions give no

contribution to the electrical response of the cell. The

leading terms for seq(vR‘) and eeq(vR‘) are inde-

pendent of the thickness of the cell. We note, finally,

that in this limit eeq(vR‘) tends to e as v23/2, as has

been experimentally observed [10].

We can now investigate the frequency dependence of

the real and imaginary parts of the impedance of the

cell. In order to obtain an explicit expression for R
and X we write b5br+ibi. Simple calculations give

br~ 1=lð Þ Mz1ð Þ=2½ �
1
2 and bi~ 1=lð Þ M{1ð Þ=2½ �

1
2,

where M~ 1z vl2
	

D

 �2

h i1
2

. By using the definition

of vr5D/l2 introduced previously, we have

M~ 1z v=vrð Þ2
h i1

2

. We now put A5tanh (brd/2),

B5tan (bid/2) and m5A(1+B2)/[1+(AB)2], n5B(12A2)/

[1+(AB)2]. With these positions the explicit expression

for the real and imaginary parts of the impedance of the

cell are found to be

R~
2l2

veM2S

nbr{mbi

M
z

vd

2D

� �
{

vl2

D

mbrznbi

M

( )

X~{
2l2

veM2S

mbrznbi

M
z

vl2

D

nbr{mbi

M
z

vd

2D

� �( )
:

ð33Þ

For v%vr, MR1, and for v&vr, MR(v/vr). Hence a

change in the frequency dependence ofR and X is expected

for v,vr.

We suppose that the cell is a slab of thickness

d1525 mm or d2550 mm, filled with the nematic liquid

crystal 5CB (4-cyano-49-n-pentylbiphenyl), planarly

oriented by the surface treatment, as considered by

Murakami et al. [9]. Since the applied voltage is very

small with respect to the threshold voltage for the

Freedericksz transition, there is no reorientation of the

nematic liquid crystal induced by the external voltage.

In this case e5eH56.7e0, where e0 is the dielectric

permittivity of free space. We assume furthermore that

the density of ions is N,4.261020 m23 and

D,8.2610212 m22/s [11, 12]. By using these values we

get l,1027 m and vr,740 rad s21.

In figure 1 we show R vð Þ. It tends to a constant

value for vR0, and to zero for vR‘; and presents a

large plateau until v,vr. In figure 2 X vð Þ is reported.

It tends to 2‘ for vR0, and to 0, from the negative

side, for vR‘. In between it has first a maximum and

then a minimum for v,vr. The equivalent conductivity

of the cell seq(v) is shown in figure 3. As discussed

above, limvR0seq(v)5eD/l2, and seq(vR‘)5(el2/D)v2.

From figure 3 it follows that seq is practically indepen-

dent of the thickness of the sample. Finally, in figure 4

1 In this case u5d/l&1. Consequently tanh u,1 and
cosh u,sinh u,eu/2.

{
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we report eeq(v). In this case limvR0e(v)5e(d/2l), and

limvR0eeq(v)5e.

6. Real and imaginary parts of the dielectric constant

In the previous sections we have investigated the

influence of ions on the dielectric spectroscopy of a

nematic cell. According to our scheme this influence is

described by the equivalent conductivity seq and

equivalent dielectric permittivity eeq of the cell.

Usually, the dielectric properties of a cell are described

by introducing a complex dielectric constant E5E92iE0.

The real part E9 is connected with the usual dielectric

properties of the medium, whereas the imaginary part E0

is related to the relative dielectric loss factor. The

relationship between seq, eeq and E9, E0 can be easily

determined. If the dielectric permittivity is a complex

quantity, the impedance of the cell is

Z~{i
1

v E0{iE00ð Þ
d

S
: ð34Þ

From equation (34) it follows that the real, R, and

imaginary, X , parts of the impedance Z are

R~
E00

v E02 z E002

 � d

S

X~{
E0

v E02 z E002

 � d

S
:

ð35Þ

Figure 2. Imaginary part of the impedance of the cell X vs.
v, in semi-logaritmic scale. Dotted line d1525 mm, full line
d2550 mm.

Figure 4. Equivalent relative dielectric permittivity of the cell
eeq vs. v, in semi-logaritmic scale. Dotted line d1525 mm, full
line d2550 mm.

Figure 1. Real part of the impedance of the cell R vs. v, in
semi-logaritmic scale. Dotted line d1525 mm, full line
d2550 mm.

Figure 3. Equivalent conductivity of the cell seq vs. v, in
semi-logaritmic scale. Dotted line d1525 mm, full line
d2550 mm. Note that seq is practically independent of the
thickness of the sample.

Impedance spectroscopy of a cell 947
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From equations (35) and (28) we get

seq~v
E02 z E002

E00
,

eeq~
E02 z E002

E0
:

ð36Þ

Consequently e9 and e0 can be expressed in terms of seq

and eeq as follows

E0~
eeq

1zv2 eeq

	
seq


 �2

E00~
v eeq

	
seq


 �
1zv2 eeq

	
seq


 �2
eeq:

ð37Þ

Equations (37) are similar to Debye equations for

relaxation phenomena in dielectrics [13]. In the present

case the relaxation time is given by t5eeq/seq. In our

case seq5seq(v) and eeq5eeq(v), due to the presence of

the ions. It follows that when ions are present, they give

rise to a distribution of relaxation times.

By means of equations (37) and (30) we get in the

limit of vR0, when d&l,

E0~
1

2
e

d

l
1{

1

4

d2l2

D2
v2

 !

E00~
1

4
e

d2

D
v 1{

1

4

d2l2

D2
v2

 !
:

ð38Þ

The relationship for E0, in the limit of vR0, shows that

in the low frequency region E0 presents a maximum for

vM,D/(ld). Furthermore, in the d.c. limit, the relaxa-

tion time tends to t(0)5dl/(2D).

In the opposite limit of high frequency (vR‘), from

equations (36) and (32), by again assuming d&l, we

obtain

E0~e 1z
D

l2dv

2D

v

� �1
2

" #

E00~
D

vl2
e:

ð39Þ

In this limit the relaxation time tends to zero as t5D/

(v2l2).

In figure 5 the dependence of log (E0/e0) on log v is

shown. Again we note that E0 is independent of the

thickness of the sample, as seq. In figure 6 we show

log (E9/e0) vs. log v, which has the usual trend. In

figure 7 we compare log (E9/e0) with log (E0/e0) vs. log v.

Finally, in figure 8 the frequency dependence of the

relaxation time of ionic origin is shown.

7. Conclusion

We have analysed the influence of the diffuse layer of

charge of ionic origin on the impedance spectroscopy of

a cell. In this study we have assumed that the electrodes

are ideally polarizable, so that neither charge transfer,

nor adsorption takes place. We have determined the

density profiles of positive and negative ions across

the sample, the current in the external circuit, and the

impedance of the cell. The equivalent conductivity seq

and dielectric constant eeq of the sample have been

Figure 5. Imaginary part of the relative complex dielectric
permittivity of the cell e0/e0 vs. v. Dotted line d1525 mm, full
line d2550 mm.

Figure 6. Real part of the relative complex dielectric
permittivity of the cell e9/e0 vs. v. Dotted line d1525 mm, full
line d2550 mm.
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obtained from the impedance of the system, and their

frequency dependence investigated. In particular we

have analysed the limits of vR0 and vR‘. In the first

case seqReD/l2 and eeqRe(d/l), whereas in the other

limit seqR(el2/D)v2 and eeqRe with v23/2. We have

also evaluated the real E9 and imaginary E0 parts of the

complex dielectric constant E. According to our model,
the presence of ions is responsible for a distribution of

relaxation times, ranging from dl/(2D) for vR0, to

zero for vR‘. Finally, we have shown that in

the low frequency region E9 has a non-monotonic

behaviour.

References

[1] J. Ross Macdonald, W.B. Johnson. in Impedance
Spectroscopy. John Wiley, New York, Chap. 1 (1987).

[2] I.D. Raistrick, J. Ross Macdonald, D.R. Franceschetti.
in Impedance Spectroscopy. John Wiley, New York,
Chap. 2 (1987).

[3] M. Scott, R. Paul, K.V.I.S. Kalert. J. colloid interface
Sci., 230, 377 (2000).

[4] M. Scott, R. Paul, K.V.I.S. Kalert. J. colloid interface
Sci., 230, 388 (2000).

[5] P.A. Cirkel, J.P.M. van der Ploeg, G.J.M. Koper.
Physica A, 235, 269 (1997).

[6] J. Lyklema. Fundamentals of Interface and Colloid
Sciences. Academic Press, London (1993).

[7] J. Israelachvili. Intermolecular Forces. Academic Press,
London, Chap. 12 (1985).

[8] J.O. Bockris, A.K.N. Reddy, M. Gamboa-Aldeco,
Modern Electrochemistry: Ionics.

[9] S. Murakami, H. Iga, H. Naito. J. appl. Phys., 80, 6396
(1996).

[10] S.L. Srivastava, R. Dhar, Indian . J. pure appl. phys., 29,
745 (1991).

[11] A. Sawada, K. Tarumi, S. Naemura. Jpn. J. appl. Phys.,
38, 1418 (1999).

[12] A. Sawada, K. Tarumi, S. Naemura. Jpn. J. appl. Phys.,
38, 1423 (1999).

[13] H. Frohlich. Theory of Dielectrics. Oxford University
Press, London (1958).

Figure 8. Relaxation time t vs. v, in semi-logaritmic scale.
Dotted line d1525 mm, full line d2550 mm.

Figure 7. Real, e9/e0, and imaginary, e0/e0, part of the relative
complex dielectric permittivity of the cell relevant to d525 mm.
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